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Fig. 1. 3D Gaussian Splatting [Kerbl et al. 2023] suffers from popping artifacts during view rotation due to its approximate, global sorting scheme. Our method
is able to effectively circumvent short-range popping artifacts (left) and long-range view-inconsistencies (right) during rotation with a novel, hierarchical
per-pixel sorting strategy.

Gaussian Splatting has emerged as a prominent model for constructing
3D representations from images across diverse domains. However, the ef-
ficiency of the 3D Gaussian Splatting rendering pipeline relies on several
simplifications. Notably, reducing Gaussian to 2D splats with a single view-
space depth introduces popping and blending artifacts during view rotation.
Addressing this issue requires accurate per-pixel depth computation, yet
a full per-pixel sort proves excessively costly compared to a global sort
operation. In this paper, we present a novel hierarchical rasterization ap-
proach that systematically resorts and culls splats with minimal processing
overhead. Our software rasterizer effectively eliminates popping artifacts
and view inconsistencies, as demonstrated through both quantitative and
qualitative measurements. Simultaneously, our method mitigates the po-
tential for cheating view-dependent effects with popping, ensuring a more
authentic representation. Despite the elimination of cheating, our approach
achieves comparable quantitative results for test images, while increasing
the consistency for novel view synthesis in motion. Due to its design, our hi-
erarchical approach is only 4% slower on average than the original Gaussian
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Splatting. Notably, enforcing consistency enables a reduction in the num-
ber of Gaussians by approximately half with nearly identical quality and
view-consistency. Consequently, rendering performance is nearly doubled,
making our approach 1.6x faster than the original Gaussian Splatting, with
a 50% reduction in memory requirements. Our renderer is publicly available
at https://github.com/r4dl/StopThePop.
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1 INTRODUCTION
In recent years, Neural Radiance Fields (NeRFs) [Mildenhall et al.
2020] have triggered a new surge of research around differentiable
rendering of 3D representations. Leveraging the traditional volume
rendering equation, NeRFs are fully differentiable, enabling contin-
uous optimization to align the representation to diverse input views
and support high-quality novel view synthesis. This differentiability
also proves valuable in addressing other rendering challenges that
necessitate gradient flow and optimization.

Various strategies have arisen to tackle challenges in NeRFs, par-
ticularly mitigating the computational costs linked to multilayer
perceptron (MLP) evaluation. These approaches include adopting
direct voxel representations [Fridovich-Keil et al. 2022], employing
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Fig. 2. Effect of collapsing 3D Gaussians into 2D splats and 3DGS’s depth simplification: (a) Integrating Gaussians along view rays r requires careful
consideration of potentially overlapping 1D Gaussians. (b) Using flattened 2D splats and view-space 𝑧 as depth (projection of 𝜇 onto v) puts 2D splats on
spherical segments around the camera, inverting the relative positions of the two Gaussians along the example view ray. (c) Camera rotation inverts the order
along r, resulting in popping. (d) Camera translation does not alter the distance compared to (b).

feature hash maps [Müller et al. 2022], and exploring tensor fac-
torizations [Chen et al. 2022; Tang et al. 2022]—departing to some
extent from the original pure MLP design. A recent notable devel-
opment in this trajectory is 3D Gaussian Splatting (3DGS) [Kerbl
et al. 2023], which renders oriented 3D Gaussians with spherical
harmonics (SH) as a view-dependent color representation.

Remaining faithful to the traditional volume rendering equation,
3DGS facilitates gradient flows from image errors to the Gaussians’
positions, shapes, densities, and colors. With an initialization based
on structure-from-motion [Snavely et al. 2006], a real-time compute-
mode rasterizer, and heuristic-driven densification and sparsifica-
tion, 3DGS converges to a high-quality representation with compact
memory requirements. Consequently, 3DGS has firmly established
itself as one of the most widely used methods for 3D scene recon-
struction and differentiable rendering.

Colored, semi-transparent 3D Gaussians serve as a versatile rep-
resentation, but their accurate rendering is challenging. Although
the projection of a 3D Gaussian onto a view ray is straightforward,
leveraging synergies between neighboring rays under perspective
projection proves intricate. Hence, 3DGS approximates them as
flattened 2D splats [Zwicker et al. 2002], necessitating depth-based
sorting for rendering. 3DGS further simplifies this step by sorting
based on the view-space 𝑧-coordinate of each Gaussian’s mean,
effectively projecting splats onto spherical shells reminiscent of
Broxton et al. [2020]. While this global sorting eases the rendering
algorithm, it introduces popping artifacts, i.e., sudden color changes
for consistent geometry, during camera rotations due to changes in
the relative depth of shells (see Fig. 2). Such view inconsistencies
due to popping can be very irritating and immersion-breaking, e.g.
during head rotation in a virtual reality setting.
Fully evaluating all Gaussians in 3D along each view ray while

considering their overlap would be ideal, but likely not feasible in
real-time. The next best solution involves approximating the loca-
tion where each Gaussian contributes the most for each view ray,
i.e., determining its depth, followed by a correct per-pixel blending.
Sorting must now happen for each view ray, rather than globally
for all Gaussians; an obvious challenge as it is not uncommon to see
thousands of Gaussians be considered for individual rays in 3DGS.
To solve this challenge, we propose a novel 3D Gaussian Splatting
rendering pipeline that exploits coherence among neighboring view

rays on multiple hierarchy levels, interleaving culling, depth evalu-
ation and resorting. We make the following contributions:
• Anovel hierarchical 3DGaussian Splatting renderer that leads
to per-pixel sorting of Gaussian splats for both the forward
and backward pass of the 3DGS rendering pipeline and thus
removes popping artifacts.
• An in-depth analysis of culling and depth approximation
strategies, as well as pipeline optimizations and workload dis-
tribution schemes for our compute-mode 3DGS hierarchical
renderer.
• A discussion and evaluation of various sorting strategies of
Gaussian splats and their influence on overall rendering qual-
ity and view-consistency.
• An effective automatic method to detect popping artifacts in
videos captured from trained 3D Gaussians as well as a user
study confirming the results of the presented method.

Our results indicate that a full per-pixel sorted renderer for Gaussian
splats eliminates all popping artifacts but reduces rendering speed
by 100×. Our hierarchical renderer is virtually indistinguishable
from a full per-pixel sorted renderer, but only adds an overhead of
4% compared to the original 3DGS.

2 PRELIMINARIES AND RELATED WORK
In the following, we review the renderer used in 3DGS. For a com-
plete description of the approach, cf. Kerbl et al. [2023].

2.1 3D Gaussian Splatting
NeRF-style rendering and 3DGS use the volume rendering equation:

𝐶 (r) =
∫ 𝑡

0
c (r, 𝑡) 𝜎 (r, 𝑡) 𝑇 (r, 𝑡) 𝑑𝑡 , where (1)

𝑇 (r, 𝑡) = 𝑒
−
∫ 𝑡

0 𝜎 (r,𝑠 ) 𝑑𝑠
,

𝐶 (r) is the output color for a given ray r, 𝜎 (r, 𝑡) is the opacity along
the ray and 𝑐 (r, 𝑡) is the view-dependent emitted radiance. 3DGS
represents a scene as a mixture of 𝑁 3D Gaussians each given by:

𝐺 (x) = 𝑒−
1
2 (x−𝜇 )

𝑇 Σ−1 (x−𝜇 ) , where

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 ,

𝜇 is the Gaussian’s location, 𝑅 is a rotation matrix and 𝑆 is a diagonal
scaling matrix, allowing to position, rotate and non-uniformly scale
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Gaussians in 3D space while ensuring that Σ is positive semi-definite.
When evaluating a 3D Gaussian along a ray, the resulting projection
is a 1D Gaussian. It seems natural to evaluate Eqn. (1) considering
how multiple Gaussians influence any location along the ray. As
there is no elementary indefinite integral known for Gaussians,
numerical integration is likely the only option. In practice, this
would require a strict sorting of all starting and end points of all
Gaussians and sampled numerical integration.

Instead, 3DGS makes multiple simplifications. First, they consider
all Gaussians to be separated in space, i.e., compress their extent
to a Dirac delta along the ray. Second, the Dirac delta of the 𝑖-th
Gaussian is located at

𝑡𝑖 = 𝜇𝑇𝑖 v, (2)
i.e., the projection of the mean 𝜇𝑖 onto the view direction v, indepen-
dent of the individual ray r. Third, they approximate the projection
of the Gaussian onto all rays, relying on an orthogonal projection
approximation considering the first derivative of the 3D Gaussian
to construct a 2D splat 𝐺2 [Zwicker et al. 2002].

These approximations enable faster rendering: Eqn. (1) becomes

𝐶 (r) =
𝑁r∑︁
𝑖=1

c𝑖𝛼𝑖
𝑖−1∏
𝑗=1
(1 − 𝛼 𝑗 ), (3)

where 𝑖 iterates over the 𝑁r Gaussians that influence the ray in the
ordering of 𝑡𝑖 , and 𝛼𝑖 is the opacity of the Gaussian along the ray,
i.e., 𝐺2 (𝑥,𝑦), multiplied by a learned per-Gaussian opacity value.
Because 𝑡𝑖 is independent of r, a global sort of all 𝑡 is possible.

Naïvely, this would lead to𝑁r = 𝑁 for all rays. To reduce the number
of Gaussians considered per ray, 3DGS splits the image into 16×16
pixel tiles, and runs a combined depth and tile sorting pre-pass,
before evaluating Eqn. (3). For each tile and each Gaussian that may
potentially contribute to any pixel in this tile—considering the 2D
bounding box around the 1% Gaussian contribution threshold—a
sorting key is generated with the tile index in the higher order bits
and the depth in the lower bits. Sorting those combined keys leads
to a 𝑡𝑖 -sorted list for each tile.

2.2 Radiance Field Methods
Contrary to 3DGS, NeRFs [Mildenhall et al. 2020] require sampling a
continuous, implicit neural scene representation densely. Therefore,
real-time rendering as well as handling unbounded scenes proves
difficult. Many follow-up works investigated NeRF extensions to
handle unbounded scenes [Barron et al. 2021, 2022, 2023] as well as
faster rendering [Chen et al. 2022; Fridovich-Keil et al. 2022; Müller
et al. 2022], 3D scene editing [Jambon et al. 2023; Kuang et al. 2023;
Nguyen-Phuoc et al. 2022], avatar generation [Zielonka et al. 2023],
scene dynamics [Park et al. 2021; Pumarola et al. 2020] and 3D object
generation [Jain et al. 2022; Poole et al. 2022; Raj et al. 2023].

2.3 3DGS Follow-up Work
Following the code release and subsequent publication of 3DGS,
several extensions have popped up investigating various paradigms,
including the editing of trained Gaussians [Chen et al. 2023; Fang
et al. 2023], text-to-3D [Tang et al. 2023; Yi et al. 2023] and 4D novel
view synthesis [Luiten et al. 2024; Wu et al. 2023]. Mip-Splatting [Yu
et al. 2023] proposes a 3D smoothing filter and 2D Mip filter to
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Fig. 3. Our approach to compute 𝑡𝑜𝑝𝑡 avoids popping by placing splats at
the point of maximum contribution along the view ray r, creating sort orders
independent of camera rotation (red view vector). Note that the shape of
𝑡𝑜𝑝𝑡 is a curved surface and changes with the camera position; cf. Fig. 2.

remedy aliasing in 3DGS. Besides them, most approaches merely
leverage Gaussians as graphics primitives, whereas our approach
tackles current problems with 3DGS.

2.4 Software Rasterization
Our compute-mode rendering pipeline for 3DGS is related to other
software-based rendering pipelines. Early works like Pomegranate
[Eldridge et al. 2000] and the Larrabee project [Seiler et al. 2008]
showed that software pipelines on custom hardware are viable for
rendering. Special compute-mode rendering pipelines have been
proposed for REYES [Tzeng et al. 2010; Zhou et al. 2009], triangle
rasterization [Karis et al. 2021; Kenzel et al. 2018; Laine and Karras
2011; Liu et al. 2010; Patney et al. 2015] and point clouds [Schütz et al.
2021]. Similarly to these efforts, we show that taking into account
the specifics of the rendering problem, a compute-mode renderer
for sorted Gaussian splats can execute in real-time on modern GPUs.

2.5 Order Independent Transparency
Correctly and efficiently rendering semi-transparent primitives,
such as Gaussian splats, proves intricate for rasterization-based
renderers. Methods approximating order independent transparency
[Wyman 2016] investigate this paradigm. 𝑘-buffers [Bavoil et al.
2007; Callahan et al. 2005] operate with a fixed per-pixel mem-
ory budget, circumventing the large memory requirement of 𝐴-
buffers [Carpenter 1984]. When this budget is exceeded, new in-
coming fragments are either merged [Salvi et al. 2011; Salvi and
Vaidyanathan 2014] or the closest fragment gets written to the color
buffer [Callahan et al. 2005]; both cases require a nearly-sorted order
for incoming fragments. Our work combines hierarchical levels of
𝑘-buffers with 3DGS’s tile-based rasterization.

3 REAL-TIME SORTED GAUSSIAN SPLATTING
We present a novel per-pixel sorted 3D Gaussian splatting approach,
departing from the current global sorting paradigm. Utilizing fast
per-pixel depth calculations and a hierarchical intra-tile cooperative
sorting approach, our method enhances the accuracy of the resulting
sort order. To streamline computations, we incorporate per-tile
opacity culling and a fast and GPU-friendly load balancing scheme.

3.1 Global Sorting
3DGS [Kerbl et al. 2023] performs a global sort based on the view-
space 𝑧-coordinate of each Gaussian’s mean 𝜇, see Eqn. (2). This
leads to a consistent sort order during translation, but not during
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Fig. 4. Correct rendering of a trained 3DGS scene with per-pixel sorting reveals how 3DGS cheats with the location of Gaussians. Our approach, on the other
hand, considers correct sorting during training and rendering. Below, we show the sort error of different resorting windows and our full approach cf. Tab. 1.
We intentionally use the trained 3DGS model here, as our trained version does not show these kinds of artifacts for visualization. The error visualization
captures the sum over the depth difference of all wrongly sorted neighbors. For resorting with a window size of 4, tile artifacts are still visible. Our approach
hardly diverges from fully sorted rendering, while running 100× faster; it is also about 5× faster than resort 24 and on average only 4% slower than 3DGS.

rotation, as illustrated in Fig. 2. While 3DGS may use this fact during
training to introduce differences between views (and thus reduce
the loss), it is in general undesirable, as camera rotations can lead to
popping artifacts, which are particularly disturbing when inspecting
the optimized 3D scene. Our objective is to stabilize color compu-
tations under rotation by splatting Gaussians based on the point
of highest contribution along each view ray. Note that, although
we improve rendering consistency, we still approximate true 3D
Gaussians, neglecting any overlap between them.

3.2 Per-pixel Depth and Naïve Sorting
When replacing a 1D Gaussian along the view ray with a Dirac
impulse, themean/maximumof this 1DGaussian is arguably the best
discrete blend location. This maximum, 𝑡𝑜𝑝𝑡 , can be computed from
the derivative of the 3D Gaussian along the view ray r(𝑡) = o + 𝑡d:

𝑡𝑜𝑝𝑡 =
d𝑇 Σ−1 (𝜇 − o)

d𝑇 Σ−1d
. (4)

Please see Appendix A for the step-by-step derivation.
Consider a simple 2D case with an isotropic Gaussian Σ−1 = I,

the camera at (0, 0) and the Gaussian at 𝜇 = (0, 𝜇𝑦). It is easy to see
that the depth function follows a cosine as d is normalized:

𝑡 =
d𝑇 I𝜇
d𝑇 Id

= 𝑑𝑦 · 𝜇𝑦 = cos(𝜃 )𝜇𝑦,

where 𝜃 is the angle of the view ray. Thus, we conclude that there
is no simple primitive, like, e.g., a plane to represent the 𝑡𝑜𝑝𝑡 which
could be rasterized traditionally, see Fig. 3. Therefore, we compute
𝑡𝑜𝑝𝑡 on a per-ray basis.

When reconstructing surfaces, Gaussians often turn very flat, as
such, Σ−1 may become large and lead to instabilities in the computa-
tion. Bounding the entries of 𝑆−1 to 103 removes those instabilities
in our experiments, by effectively thickening very thin Gaussians,
with minimal impact on the computed depth.

With the computation of 𝑡𝑜𝑝𝑡 in place, we can eliminate all pop-
ping artifacts and ensure perfect view-consistency by sorting all
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(a) w/o per-tile depth (b) w/ naïve per-tile depth

Fig. 5. Comparison of 3DGS with and without per-tile depth calculation.
Per-tile depth calculation lowers sorting errors (𝛿𝑚𝑎𝑥 = 4.01, 𝛿𝑎𝑣𝑔 = 0.284
compared to 𝛿𝑚𝑎𝑥 = 5.43, 𝛿𝑎𝑣𝑔 = 0.898). However, doing this without
additional per-pixel sorting leads to artifacts at the tile borders.

Gaussians per ray by their 𝑡𝑜𝑝𝑡 value. Unfortunately, even the sim-
plest 3DGS reconstructions consist of tens of thousands of Gaussians,
often leading to thousands of potentially contributing Gaussians per
view ray. Furthermore, early ray termination cannot be performed
before sorting, as it is dependent on the sort order. Even an opti-
mized parallel per-ray sort on top of the original 3DGS tile-based
rasterizer leads to slowdowns of more than 100×, not only making
the approach impractical for real-time rendering, but also impeding
optimization.

3.3 Per-tile Sorting and Local Resorting
Although it is not possible to describe 𝑡𝑜𝑝𝑡 with a simple primitive
for rasterization, we may still rely on the fact that 𝑡𝑜𝑝𝑡 is smooth
across neighboring rays. As such, the sorting order of neighboring
rays should also be similar. Because sorting in 3DGS already happens
with a combined tile/depth key, we could replace the global depth
with an accurate per-tile depth value for each Gaussian, e.g., using
the tile center ray for Eqn. (4). As can be seen in Fig. 5, using per-tile
depth clearly leads to artifacts along the tile borders.
With that in mind, we propose a simple per-ray resorting ex-

tension. Instead of immediately blending the next Gaussian when
walking through the tile list, we keep a small resorting window in
registers. When loading a Gaussian, we evaluate its 𝑡𝑜𝑝𝑡 and use
insertion sort to place it in the resorting window. If the window
overflows, we blend the sample with the smallest depth. This simple
method follows the idea of 𝑘-buffers [Bavoil et al. 2007; Callahan
et al. 2005] without fragment merging, which requires the Gaussians
along a ray to be nearly-sorted. Although this sorting strategy is
easy to implement, it already achieves good results for a resorting
window of about 16 to 24, removing the majority of visible popping
artifacts in our tested scenes. To confirm the improvement in blend-
ing order, we compute a per-ray sort error 𝛿 : If two consecutive
Gaussians are out of order, we accumulate their difference in 𝑡𝑜𝑝𝑡 .
We present a visual example in Fig. 4, with corresponding runtimes
and 𝛿 in Tab. 1 — evidently, even though 𝛿 decreases with a larger
resorting window, there is a non-negligible increase in runtime.

3.4 Hierarchical Rendering
Local resorting is already able to significantly improve the per-pixel
sort order, which greatly reduces popping artifacts. To tackle the
imposed performance overhead, we insert additional resorting levels

(a) w/o tile-based culling (b) w/ tile-based culling

0
5k

Fig. 6. Number of Gaussians per tile with and without tile-based culling for
the Mip-NeRF 360 Garden scene. The average number of Gaussians per tile
is reduced by ∼ 44%.

Table 1. Maximum sort error over all pixels and average sort error for two
representative example views from Fig. 4. A full sort per ray increases ren-
dering times (relative to 3DGS) by more than 100×. Local resorting with a
sort window of 16 to 24 removes the majority of visible popping artifacts, yet
increases rendering time 2 to 6×. Our hierarchical approach improves sort
quality further and keeps processing time low. Note that a larger sorting
window may lead to more Gaussians being fetched and thus our measure-
ment of 𝛿max may increase with larger sort windows.

3DGS Full Resorting Window Ours
4 8 16 24

Tr
ai
n 𝛿max 28.445 0.000 5.867 3.882 3.544 4.580 0.575

𝛿avg 3.688 0.000 0.124 0.045 0.014 0.007 0.003
time[ms] 1.00 142.03 1.21 1.66 2.70 4.22 0.92

Bo
ns
ai 𝛿max 33.543 0.000 12.786 8.954 6.391 5.595 3.098

𝛿avg 3.786 0.000 0.265 0.110 0.039 0.019 0.006
time[ms] 1.00 179.70 1.76 2.58 4.33 6.88 1.47

between tiles and individual threads, creating a sort hierarchy. In
this way, we can share sorting efforts between neighboring rays,
while incrementally refining the sort order as we move towards
individual rays. By additionally culling non-contributing Gaussians
at every level of the hierarchy, we can drastically reduce sorting
costs. We propose a hierarchical rendering pipeline that relies on
the innate memory and execution hierarchy of the GPU to minimize
the number of memory access operations, as outlined in Fig. 7. For
a fair comparison, we intentionally only alter the blend order of
Gaussians and leave the other parts of 3DGS untouched, including
the 2D splatting approximation from Zwicker et al. [2002].

Tile-based culling. We propose a fast tile-based culling approach
that bounds Gaussians to exactly those tiles they contribute to. For
each ray, Kerbl et al. [2023] disregard Gaussians with a contribution
below 𝜖𝑂 = 1/255, which forms an exact culling condition. Like
3DGS, we start with an axis-aligned bounding rectangle using the
largest eigenvalue of the 2D covariance matrix to determine which
tiles may potentially be touched during both Preprocess and Duplica-
tion. This conservative estimate gives very large bounds for highly
anisotropic Gaussians.

ACM Trans. Graph., Vol. 43, No. 4, Article 64. Publication date: July 2024.
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Fig. 7. Overview of the detailed steps in our pipeline. We add load balancing, tile culling and per-tile depth evaluation to the first two stages of 3DGS. Our
hierarchical rasterizer utilizes three sorted queues, going from 4×4 tiles over 2×2 tiles to individual rays. The queues store only id and the tile’s 𝑡𝑜𝑝𝑡 per
Gaussian, while additional information is re-fetched from global memory on demand, and shared between threads via shuffle operations. Depending on the
queue fill levels, we switch between different cooperative group sizes while ensuring the queues remain filled for effective sorting. Our pipeline achieves an
overall sorting window of 25-72 elements.

For exact culling, we then calculate the point x̂ inside each tile 𝑋
that maximizes the 2D Gaussian’s contribution 𝐺2 (x):

x̂ = arg max
x∈𝑋

𝐺2 (x) = arg min
x∈𝑋

(x − 𝜇2)𝑇 Σ−1
2 (x − 𝜇2). (5)

If 𝜇2 ∈ 𝑋 ⇒ x̂ = 𝜇2. If 𝜇2 ∉ 𝑋 , then x̂ must lie on one of the two
tile edges closest to 𝜇2, due to Gaussians being monotonic along
rays pointing away from 𝜇2. We can then compute the maximum
along those two edges (similar to Eqn. (4), but in 2D) and clamp
the resulting values to obtain x̂ (see the Appendix B.1 for the full
algorithm). Finally, we evaluate 𝐺2 (x̂) to perform the comparison
with 𝜖𝑂 , which significantly reduces the number of Gaussians per
tile (cf. Fig. 6).

Tile-depth Adjustment. For pre-sorting we require a representa-
tive 𝑡𝑜𝑝𝑡 per tile. Intuitively, the center ray of the tile should be a
valid compromise for all rays in the tile. However, this completely
ignores the fact that a Gaussian in general does not uniformly con-
tribute to all rays in a tile. Especially for small Gaussians whose
main extent is approximately parallel to the view rays, the center
ray may result in depth estimates far away from any contribution
made by the Gaussian.
Arguably, the weighted integral

∫
𝑋
𝐺2 (x)𝑡𝑜𝑝𝑡 (x)𝑑x is a better

estimate. Yet, even a numerical approximation considering all rays
in the tile 𝑋 is too compute-intensive. Thus, we approximate it with
a single sample: the one with the highest weight within a tile, i.e.,
x̂. Since x̂ was already calculated during culling, we only need to
construct the corresponding ray to evaluate 𝑡𝑜𝑝𝑡 . The optimized
depth location reduces (𝛿max, 𝛿avg) from (1.553, 0.006) to (0.575,
0.003) and (3.917, 0.014) to (3.098, 0.006) for the views in Tab. 1.

Load Balancing. Similar to other compute-mode rasterization
methods, primitives that cover a large portion of the screen may
become an issue if a single thread evaluates their coverage. For 3DGS,
this is the case in the first two stages of the rendering pipeline, which
operate on a per-Gaussian basis. For our method, tile-culling and
per-tile depth calculations increase the workload of these stages,
which further amplifies this problem.

To remedy this issue, we propose a two-stage load balancing
scheme: In the first phase, each thread responsible for a Gaussian
which covers fewer than a predetermined maximum number of
tiles, performs its own processing. We empirically determined that
a maximum of 32 tiles results in good performance. Most threads
are typically idle after this initial phase. In the second phase, we
distribute the remaining workload within each warp using warp
voting and shuffle instructions. For close-ups and high-resolution
rendering, where single Gaussians often cover a large portion of
the screen, our approach can speed up Preprocess and Duplication
by up to 10×.

Hierarchically Sorted Rendering. With the goal of establishing a
hierarchical rendering pipeline, a naïve approach is to design one
kernel per hierarchy level. However, such an approach would re-
quire communication via slow global memory between the levels
and would prohibit early ray termination after reaching the opacity
threshold. Thus, we opt for combining the final three levels of our
rendering hierarchy in a single kernel, where multiple threads co-
operatively sort and manage shared queues, as detailed in Fig. 7. We
use a large 4×4 tile-queue of 64 elements (managed by 16 threads),
feeding into four eight-element 2×2 tile-queues. Finally, each 2×2
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tile-queue feeds into four per-pixel queues with four elements, man-
aged by one thread each. For one 16×16 tile, we thus start 256
threads, allocate 16 4×4 tile-queues and 64 2×2 tile-queues in shared
memory as well as one per-pixel queue per thread in registers. Each
queue stores only the Gaussian’s id and the current level’s depth
𝑡𝑜𝑝𝑡 . Additional information is loaded on demand from global mem-
ory and shared between threads of the hierarchical level via shuffle
operations, e.g. 𝜇, Σ−1 during depth calculation, or 𝜇2, Σ−1

2 during
culling and blending.

The queues follow a push methodology to keep queue fill rates as
high as possible, ensuring that resorting remains effective. While
16 threads (a halfwarp) are assigned to each 4×4 tile-queue, we load
and feed batches of 32 into two 4×4 tile-queues at once, allowing
all threads within a warp to load data together. After loading, each
thread performs tile-based culling (as described before, but for a
4×4 tile), followed by computing 𝑡𝑜𝑝𝑡 . For culled Gaussians, we set
𝑡𝑜𝑝𝑡 = ∞. Then, each halfwarp sorts the 32 newly loaded elements
using Batcher Merge Sort [Batcher 1968] before writing them to the
back of the 4×4 tile-queue. Typically, there are now two individually
sorted parts in the 4×4 tile-queue: the already present elements (up
to 32) and the newly added (up to 32). As both are sorted, we use
efficient merge sort to combine them. Culled Gaussians are now at
the back of the queue and can be discarded.

While there are more than 32 elements in the 4×4 tile-queue, we
push batches of size 16 into the 2×2 tile-queue. Each thread in the
halfwarp re-fetches the data needed for computing 𝑡𝑜𝑝𝑡 for a single
Gaussian. Each group of four threads then pushes sub-batches of
size four into their 2×2 tile-queue, relying on shuffle instructions
to update 𝑡𝑜𝑝𝑡 for each 2×2 tile. We follow the same approach as
before: we sort the four new entries according to depth, for which
we use a simple coordination using shuffle instructions. We then
use merge sort to combine the new elements with the existing ones.
After the 2×2 tile-queue is filled, we draw four elements from

it and insert them into the per-pixel queue. Again, we batch-load
the needed data using the four threads assigned to the respective
2×2 tile-queue, and again use shuffle instructions to communicate
all relevant information for each Gaussian to all other threads in
the 2×2 tile. We evaluate 𝑡𝑜𝑝𝑡 and 𝛼 for the respective rays and
insert the newly computed data into the per-pixel queue. If the
Gaussian’s 𝛼 is below 𝜖𝑂 , we simply discard it. As we add elements
one by one into the per-pixel queue, we rely on simple insertion
sort. Only if the per-pixel queue is full, we take one element from it
and perform blending, freeing up space for the next element from
the 2×2 tile-queue.
Due to the hierarchical structure, we effectively construct an

overall sort window varying between 25 and 72, where theminimum
is hit if the 4×4 tile-queue is drained down to 17 elements, with 4
elements remaining in the other queues. 72 elements are sorted if we
fill the 4×4 tile-queue with 64 elements and then move 4 elements
through the half-filled 2×2 tile-queue and the filled per-pixel queue.
While our sort setup typically achieves better sorting than a simple
per-thread sort window of 25, we may occasionally achieve worse
sorting, as the higher-level queues are shared between threads.

The sizes of the three queues are variable, with some restrictions.
The 4×4 tile-queue size is constrained to 32𝑛 + 32, with 𝑛 ∈ Z+,
as this enables efficient warp-wide merge sort. Similarly, the 2×2

tile-queue must be of size 4𝑚 + 4, with𝑚 ∈ Z+, as it is managed
by four threads. The per-pixel queue size can be chosen arbitrarily.
We heuristically decided on (64/8/4) for the three queue sizes, as
this achieves a large enough sort window, while limiting shared
memory requirements and register pressure, ultimately leading to
better performance. We provide ablations for our chosen queue sizes
and load balancing thresholds in Appendix E.

3.5 Backward Pass
Contrary to 3DGS, we perform gradient computations in front-to-
back blending order, avoiding the large memory overhead required
for storing per-pixel sorted Gaussians—which would be needed to
restore the correct blending order.

Gradient computation in 3DGS, independent of direction, requires
the final accumulated transmittance 𝑇𝑁r =

∏𝑁𝑟

𝑗=1 (1 − 𝛼 𝑗 ) and the fi-
nal per-pixel color𝐶 (r). To compute gradients for the 𝑖-th Gaussian
along a view ray, we require the contribution of all subsequently
blended Gaussians. Crucially, rather than accumulating the contri-
bution of subsequent Gaussians back-to-front, we use subtraction
and division, i.e.

𝑁r∑︁
𝑗=𝑖+1

c𝑗𝛼 𝑗
𝑗−1∏
𝑘=1
(1 − 𝛼𝑘 ) = 𝐶 (r) −𝐶𝑖 , (6)

𝑁r∏
𝑘=𝑖

(1 − 𝛼𝑘 ) =
𝑇𝑁r

𝑇𝑖
, (7)

where𝐶𝑖 is the accumulated output color including the 𝑖-th Gaussian
in front-to-back order. As we perform the same rendering routine as
in the forward pass, including early stopping, the backward pass is
equally efficient. Note that this does not change the stability of the
gradient computations; 3DGS also relies on a division. Arguably, our
approach may even lead to more accurate gradients as the Gaussians
blended first along a ray have a higher contribution to the final color
and computing those first, will accumulate less floating point errors
compared to reversing the computation.
It is imperative that the same exact sort order is used between

forward and backward pass to ensure correct gradients. Like 3DGS,
we keep the global sort order in memory, which ensures that po-
tentially equal depth values do not lead to different sorting results.
In our implementation, we use stable sorting routines throughout:
Batcher Merge Sort [Batcher 1968] is stable by design, our merge
sort routines rely on each thread’s rank to establish sort orders
among equal depths, and our insertion sort is trivially stable.

4 EVALUATION
For evaluation, we follow Kerbl et al. [2023] and use 13 real-world
scenes fromMip-NeRF 360 [Barron et al. 2022], Deep Blending [Hed-
man et al. 2018] and Tanks & Temples [Knapitsch et al. 2017].

Opacity Decay. A viable approach to reduce the total number of
Gaussians after optimization is replacing 3DGS’s opacity reset with
a standard Opacity Decay during training. Every 50 iterations, we
multiply each Gaussian’s opacity with a constant 𝜖decay = 0.9995.
We find that this modification results in significantly fewer, but
larger Gaussians, potentially causing exacerbated popping.
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Table 2. Image metrics for our method, 3DGS and related work. Results with dagger (†) are reproduced from Kerbl et al. [2023] to facilitate cross-method
comparisons. Our quality is comparable to 3DGS. With Opacity Decay, our approach loses slightly less quality than 3DGS.

Dataset Deep Blending Mip-NeRF 360 Indoor Mip-NeRF 360 Outdoor Tanks & Temples
Metric PSNR↑ SSIM↑ LPIPS↓ FLIP ↓ PSNR↑ SSIM↑ LPIPS↓ FLIP ↓ PSNR↑ SSIM↑ LPIPS↓ FLIP ↓ PSNR↑ SSIM↑ LPIPS↓ FLIP ↓

Mip-NeRF 360† 29.40 0.900 0.245 0.138 31.57 0.914 0.182 0.088 24.42 0.691 0.286 0.170 22.22 0.758 0.256 0.232
Instant-NGP (base)† 23.62 0.797 0.423 0.258 28.65 0.840 0.281 0.120 22.63 0.536 0.444 0.203 21.72 0.723 0.330 0.245
Instant-NGP (big)† 24.96 0.817 0.390 0.222 29.14 0.863 0.241 0.114 22.75 0.567 0.403 0.200 21.92 0.745 0.304 0.241
Plenoxels† 23.09 0.794 0.425 0.244 24.84 0.765 0.366 0.182 21.69 0.513 0.467 0.229 21.09 0.719 0.344 0.262
3DGS 29.46 0.900 0.247 0.131 30.98 0.922 0.189 0.094 24.59 0.727 0.240 0.167 23.71 0.845 0.178 0.199
Ours 29.86 0.904 0.234 0.127 30.62 0.921 0.186 0.099 24.60 0.728 0.235 0.167 23.21 0.843 0.173 0.216

3DGS (Opacity Decay) 28.94 0.894 0.262 0.134 30.57 0.918 0.198 0.097 24.45 0.718 0.261 0.169 23.52 0.839 0.194 0.205
Ours (Opacity Decay) 29.84 0.905 0.241 0.126 30.03 0.917 0.194 0.103 24.46 0.722 0.254 0.169 23.18 0.839 0.184 0.214

4.1 Quantitative Evaluation
Image Metrics. For our quantitative evaluation, we report PSNR,

SSIM, LPIPS [Zhang et al. 2018] and FLIP [Andersson et al. 2020]
in Tab. 2. To facilitate cross-method comparisons, we reproduce
the results from Kerbl et al. [2023] for Mip-NeRF 360 [Barron et al.
2022], Instant-NGP [Müller et al. 2022] and Plenoxels [Fridovich-
Keil et al. 2022]. For Deep Blending and Mip-NeRF 360 Outdoor, we
outperform 3DGS. For Tanks & Temples and Mip-NeRF 360 Indoor,
our model performs slightly worse, which we attribute to 3DGS’s
ability to fake view-dependent effects with popping. When enabling
Opacity Decay, which results in ∼50% fewer Gaussians, our method
retains more quality than 3DGS. In general, our approach performs
comparably to 3DGS in terms of standard image quality metrics.

Popping. View inconsistencies between subsequent frames, such
as popping, cannot be detected with standard image quality metrics.
To detect such artifacts, we follow recent best practice in 3D style
transfer [Nguyen-Phuoc et al. 2022] and measure the consistency
between novel views and warped novel views with optical flow [Lai
et al. 2018]. While ground-truth images or videos may seem attrac-
tive, they vary significantly in location and thus view-dependent
effects or only exist for a small subset of our used datasets. For our
method and 3DGS, we capture videos from three separate camera
paths per scene, exhibiting both rotation and translation. We then
directly warp each frame F𝑖 to a subsequent frame F𝑖+𝑡 with offset
𝑡 using optical flow predictions from state-of-the-art RAFT [Teed
and Deng 2020].
Measuring the error between the warped frame F̂𝑖+𝑡 and the

rendered frame F𝑖+𝑡 with MSE does not prove effective to detect
popping artifacts (see Fig. 9). MSE tends to weigh small inaccu-
racies that originate from warping higher than popping artifacts.
FLIP [Andersson et al. 2020] proves significantly more reliable in
our experiments, as it approximates the difference perceived by hu-
mans when flipping between images — a scenario in which popping
artifacts are particularly disturbing. For each frame, we calculate a
consistency error 𝐸𝑖+𝑡 = FLIP(F̂𝑖+𝑡 , F𝑖+𝑡 ). For each video, consisting
of 𝑁𝐹 frames, we then compute the mean FLIP error as

FLIP𝑡 =
1

𝑁𝐹 − 𝑡

𝑁𝐹 −𝑡∑︁
𝑖=0

𝐸𝑖+𝑡 . (8)

Note that the error metric includes a base error floor due to dis-
occlusions under translation and correct view-dependent shading.

To mitigate these issues, we use an occlusion detection method
from Ruder et al. [2016], do not consider the outermost 20 pixels,
and subtract the per-pixel minimum FLIP𝑡 score — clearly, this does
not perturb the inter-method differences.
We use 𝑡 = 1 and 𝑡 = 7 to measure short-range and long-range

consistency, following Nguyen-Phuoc et al. [2022]. Tab. 3 shows our
obtained results. The large margins, particularly for FLIP7, highlight
that our method is more view-consistent than 3DGS. We argue that
FLIP7 is a more reliable metric, allowing errors due to popping to
accumulate over multiple frames, as can be seen in Fig. 8. Please
see the supplementary video for further evidence. With Opacity
Decay, our approach achieves virtually identical results, indicating
that our method can handle large Gaussians. For 3DGS, popping
is significantly increased, indicating that 3DGS may increase the
number of Gaussians to hide imperfections in the renderer, while
our approach achieves comparable view-consistency scores.

Table 3. View-consistency metrics for videos. We measure FLIP𝑡 for
timesteps 𝑡 ∈ {1, 7} (lower is better). Our method outperforms 3DGS with
and without Opacity Decay.

Dataset DB M360 Indoor M360 Outdoor T&T
Metric FLIP1 FLIP7 FLIP1 FLIP7 FLIP1 FLIP7 FLIP1 FLIP7

Without Opacity Decay

3DGS 0.0061 0.0114 0.0069 0.0134 0.0083 0.0148 0.0102 0.0286
Ours 0.0053 0.0059 0.0060 0.0077 0.0085 0.0122 0.0076 0.0113

With Opacity Decay

3DGS 0.0063 0.0122 0.0072 0.0149 0.0083 0.0154 0.0107 0.0315
Ours 0.0052 0.0055 0.0060 0.0073 0.0083 0.0115 0.0076 0.0114

Depth Evaluation. 3DGS enables efficient extraction of depth val-
ues 𝜁 ∈ R+ with volumetric rendering:

𝜁 =

𝑁r∑︁
𝑖=1

𝜙 (𝜇𝑖 ; o, d) 𝛼𝑖
𝑖−1∏
𝑗=1
(1 − 𝛼 𝑗 ), (9)

where 𝜙 (·) describes the depth of a single Gaussian with location 𝜇

(in 3DGS’s case, 𝜙 (𝜇; o, d) = ∥𝜇 − o∥2). Clearly, this depth estimate
is dependent on the sort order, leading to problems for 3DGS’s
approximate global sort. Our approach improves sort quality and
places 2D splats at the points of maximum contribution (𝜙 (𝜇; o, d) =
𝑡𝑜𝑝𝑡 , cf. Eqn. (4)).
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Table 4. Depth-consistency metric 𝐸𝑑𝑒𝑝𝑡ℎ for 3D points P̄ from
COLMAP [Schönberger and Frahm 2016] (lower is better). We report the
mean results over all test set views. Our method outperforms 3DGSwith and
without Opacity Decay In total, we consider | P̄ | = 17404 points without
opacity decay and | P̄ | = 11306 with opacity decay.

Dataset DB M360 Indoor M360 Outdoor T&T Average

Method Without Opacity Decay

3DGS 0.133 0.219 0.764 1.108 0.552
Ours 0.122 0.242 0.387 0.947 0.388

With Opacity Decay

3DGS 0.095 0.127 0.637 0.967 0.447
Ours 0.073 0.168 0.408 0.916 0.361

We establish a metric to compare multi-view consistency in
depth estimates, leveraging the sparse point cloud P = {p𝑖 } from
COLMAP [Schönberger and Frahm 2016], which serves as initial-
ization for 3DGS. If p𝑖 is visible from a camera with position o, we
reconstruct the estimated location p̂𝑖 = o+𝜁 ·d, with rendered depth
𝜁 and view direction d of the corresponding pixel of p𝑖 . The black
background for real-world scenes used by 3DGS enables cheating by
not fully accumulating opacity and blending the background color.
For a fair comparison, if any of the testedmethods has𝑇𝑁r > 1×10−2

for a point p𝑖 , we do not consider this point in our set of tested points
P̄. To minimize errors due to resolution, we render at the resolution
used for COLMAP when computing p̂𝑖 . Finally, we establish the
depth error 𝐸𝑑𝑒𝑝𝑡ℎ as

𝐸𝑑𝑒𝑝𝑡ℎ =
1
|P̄ |

∑︁
p𝑖 ∈ P̄

∥p̂𝑖 − p𝑖 ∥2 . (10)

We compute 𝐸𝑑𝑒𝑝𝑡ℎ for all test set views and report our results in
Tab. 4. On average, our method achieves better scores than 3DGS, es-
pecially for the outdoor scenes of Mip-NeRF 360 [Barron et al. 2022].
Opacity decay leads to significantly fewer and larger Gaussians, re-
sulting often in lower accumulated opacity and, consequently, more
discarded points. Both methods achieve better results for 𝐸𝑑𝑒𝑝𝑡ℎ
in this case, as these removed points often correspond to the back-
ground, where depth estimates are generally less precise.

4.2 Qualitative Evaluation
To complement our quantitative evaluation, we provide image com-
parisons in Fig. 10 and conduct a user study to verify the effective-
ness of our approach and our proposed popping detection method.

4.2.1 User Study. 18 participants were presented with pairs of
videos from our approach and 3DGS, following the same camera
path. The captured scenes exhibit rotation, translation, as well
as a combination of the two. We instructed the participants to
rate the videos concerning view-consistency and popping artifacts.
The participants then indicated whether either of the techniques
performed better or equal, which we translated into scores 𝑠 ∈
(−1, 0, +1). On average, the results showed a clear preference for

Table 5. Performance timings for different configurations of our method
and 3DGS. The number of Gaussians is roughly the same for all methods
(scene average ∼2.98M). Applying Opacity Decay during training leads to
∼ 50% fewer Gaussians (scene average ∼1.54M).

Timings in ms Preprocess Duplicate Sort Render Total

Without Opacity Decay

3DGS 0.451 0.567 1.645 2.134 4.797
(A) Ours 0.649 0.437 0.301 3.599 4.986
(B) Ours w/o per-tile depth 0.658 0.283 0.301 3.599 4.841
(C) Ours w/o load balancing 0.847 2.059 0.415 3.505 6.827
(D) Ours w/o tile-based culling 0.610 0.479 1.180 5.346 7.614
(E) Ours w/o hier. culling 0.649 0.437 0.301 5.967 7.364

With Opacity Decay

3DGS 0.215 0.378 0.626 1.059 2.276
Ours 0.366 0.223 0.161 2.227 2.976

our approach (𝑠𝑚𝑒𝑎𝑛 = 0.42), which is statistically significant ac-
cording to Wilcoxon Signed Rank tests (𝑍 = 2276.5, 𝑝 < .0001).
Details about the study can be found in Appendix D.

4.3 Performance and Ablation
In the following, we provide a detailed performance analysis for
different configurations of our method. For our timings, we take all
available COLMAP poses and interpolate a camera path between
them (30 frames per pose), ensuring a variety of plausible viewpoints.
All timings were measured for Full HD rendering and averaged over
4 runs, where we used an NVIDIA RTX 4090 with CUDA 11.8.

Performance for different configurations. We provide a perfor-
mance comparison between 3DGS and our renderer with differ-
ent configurations in Tab. 5. On average, the Render stage takes
considerably longer for our hierarchical renderer (A-E) due to ad-
ditional per-ray sorting. Not computing the per-tile depth (B) only
marginally speeds up the Duplicate stage. Without our load balanc-
ing scheme (C), Duplicate takes 5× longer, as it is mostly dominated
by very large Gaussians. Disabling tile-based culling (D) slightly
accelerates Preprocess but leads to many more entries in the global
sorting data structure, which increases Sort and Render times. Dis-
abling hierarchical culling inside the render kernel (E) leads to a
drastic increase in Render time as all Gaussians move through the en-
tire pipeline. Our final approach (A) with all optimizations achieves
competitive runtimes on all evaluated scenes. Both methods see a
drastic performance increase with Opacity Decay due to the signifi-
cantly lower number of Gaussians—however, while our approach
stays view-consistent, 3DGS shows even more popping artifacts.

Scene Comparison. Individual scenes with a similar number of
Gaussians can exhibit sharp differences in runtime behavior. In
Tab. 6 and Tab. 7, we show detailed timings and metrics for two
exemplary scenes - Bonsai and Train - which display the largest
inter-method differences in performance, despite their comparable
number of Gaussians 𝑁 . Even though the Train scene contains
slightly fewer Gaussians than Bonsai, the average number of visible
(inside the view-frustum) Gaussians 𝑁𝑉 , as well as their average
screen-space size (indicated by avg./std. corresponding image tiles
𝑁𝑡 ), is considerably larger.
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Fig. 8. Visualization of our proposed popping detection method with detailed views inset. We warp view F𝑖 to F̂𝑖+1, F̂𝑖+7 using optical flow and use FLIP to
measure errors between warped and non-warped views. While FLIP1 is able to effectively detect popping artifacts, the obtained errors are only accumulated
over a single frame. On the contrary, FLIP7 is able to accumulate errors due to popping over multiple frames, making this metric more reliable. We increased
contrast for the zoomed-in views to better highlight view-inconsistencies.

Non-warped view F𝑖+1 Warped view F̂𝑖+1 FLIP1 MSE(F𝑖+1, F̂𝑖+1)

Fig. 9. Comparison between FLIP and MSE to measure differences between rendered frames F𝑖+1 and warped frames F̂𝑖+1 for 3DGS. Notably, using MSE does
not yield large errors even when disturbing popping artefacts are encountered — FLIP, on the other hand, weighs such artifacts accordingly.
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Fig. 10. Image comparisons of our method and 3DGS. In most configurations, our rendered images are virtually indistinguishable from 3DGS. For each scene,
we show a result where our method performs better on the left, and a result where 3DGS performs better on the right.

Table 6. Performance timings for different configurations of our method
and 3DGS for the exemplary scenes Bonsai & Train, which show contrary
runtime behaviors. Times in ms for Full HD resolution.

Timings in ms Preprocess Duplicate Sort Render Total

Bonsai, ∼1.25M Gaussians

3DGS 0.224 0.384 0.700 1.266 2.574
(A) Ours 0.295 0.321 0.173 2.610 3.399
(C) Ours w/o load balancing 0.467 1.920 0.272 2.592 5.251
(D) Ours w/o tile-based culling 0.282 0.331 0.554 3.680 4.846

Train, ∼1.05M Gaussians

3DGS 0.288 0.811 2.451 1.998 5.548
(A) Ours 0.409 0.495 0.270 3.052 4.225
(C) Ours w/o load balancing 0.647 2.336 0.333 2.899 6.215
(D) Ours w/o tile-based culling 0.323 0.542 1.550 5.054 7.469

Table 7. Metrics of our method and 3DGS for exemplary scenes Bonsai
& Train, highlighting the effect of our tile-based culling. Columns include
total vs. visible (in view-frustum) number of Gaussians (𝑁 vs. 𝑁𝑉 ), as well
as standard deviation and average number of 16×16 tiles covered by each
visible Gaussian (𝑁𝑡 ). We additionally include an approximate number of
sort entries as 𝑁𝑉 · avg(𝑁𝑡 ) .

Scene Method 𝑁 𝑁𝑉 avg(𝑁𝑡 ) std(𝑁𝑡 ) Sort Entries

Bonsai Ours 1.26M 0.41M 4.198 15.282 1.72M
3DGS 1.24M 0.40M 10.801 52.236 4.36M

Train Ours 1.05M 0.57M 5.004 20.127 2.85M
3DGS 1.08M 0.59M 17.282 89.891 10.2M

As larger Gaussian splats provide more opportunities for culling,
our tile-based culling results in a larger reduction of avg. 𝑁𝑡 for
Train than Bonsai (∼3.5× vs. ∼2.5×). The resulting lower number of
sort entries allows Train to amortize the slower Render stage with a
much faster Sort, while Bonsai does not experience the same gains.

Backward Pass Performance. The relative performance of our back-
ward Render pass compared to 3DGS is only 1.1× compared to the
1.5× we see for the forward Render stage. This is mostly due to
the backward Render executing a large number of atomics, which

are equal between both approaches. Although the backward pass
skips Duplicate and Sort—which are faster in our renderer—the final
change in training time is only about 3%. The backward Render pass
is only a single step in the entire training pipeline and thus, the
overall time loss is close to negligible. Again, if we turn on Opacity
Decay, training becomes proportionally faster.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK
In this paper, we took a closer look at the way 3D Gaussian Splatting
orders splats during blending. A detailed analysis of the splat’s depth
computation revealed the reason for popping artifacts of 3DGS: the
computed depth is highly inconsistent under rotation. A per-ray
depth computation which considers the highest contribution along
the ray as optimal blending depth, removes all popping artifacts but
is 100× more costly. With our hierarchical renderer, which includes
multiple culling and resorting stages, we are only 1.04× slower
than 3DGS on average. While it is difficult to identify popping in
standard quality metrics, we provided a view-consistency metric
based on optical flow and FLIP, which shows that our approach
significantly reduces popping. We could also confirm this fact in a
user study and provided an additional metric confirming increased
view-consistency and more accurate depth estimates for our method.
Furthermore, our approach remains view-consistent even when con-
structing the scene with half the Gaussians; for which 3DGS shows
a significant increase in popping artifacts. As such, our approach
can reduce memory by 2× and render times by 1.6× compared to
3DGS in this configuration, while reducing popping artifacts and
achieving virtually indistinguishable quality.
While our approach typically removes all artifacts in our tests,

resorting does not guarantee the right blend order, and thus could
still lead to popping or flickering for very complex geometric rela-
tionships. Furthermore, our approach still ignores overlaps between
Gaussians along the view ray. A fully correct volume rendering
of Gaussians may not only remove artifacts completely but could
lead to better scene reconstructions—a direction certainly worth
exploring in the future. Both our renderer and our optimizations for
3DGS are publicly available at https://github.com/r4dl/StopThePop.
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A DERIVING DEPTH FOR 3D GAUSSIANS ALONG A RAY
In order to get an accurate depth estimate for our sort order of
3D Gaussians along a view ray r(𝑡) = o + 𝑡d, we compute the
𝑡𝑜𝑝𝑡 which maximizes the Gaussian’s contribution along the ray, i.e.
arg max𝑡 𝐺 (r(𝑡)). This optimum can be found through the following
derivation:

𝑑𝐺 (r(𝑡))
𝑑𝑡

= −1
2𝐺 (r(𝑡)) ·

(
(r(𝑡) − 𝜇)Σ−1d + d𝑇 Σ−1 (r(𝑡) − 𝜇)

)
= −1

2𝐺 (r(𝑡)) ·
(
2 · d𝑇 Σ−1 (r(𝑡) − 𝜇)

)
= −𝐺 (o + 𝑡d) ·

(
d𝑇 Σ−1 (o + 𝑡d − 𝜇)

) !
= 0

⇒ d𝑇 Σ−1 (o + 𝑡d − 𝜇) = 0

⇒ d𝑇 Σ−1d · 𝑡 + d𝑇 Σ−1 (o − 𝜇) = 0

𝑡𝑜𝑝𝑡 =
d𝑇 Σ−1 (𝜇 − o)

d𝑇 Σ−1d
. (11)

The simplification from the first to the second line relies on the
fact that Σ−1 is symmetric and thus both expressions are identical.
Σ−1 can be efficiently computed:

Σ−1 =

(
𝑅𝑆𝑆𝑅𝑇

)−1
= 𝑅𝑆−1𝑆−1𝑅𝑇 = 𝑅

©­«
𝑠−2
𝑥 0 0
0 𝑠−2

𝑦 0
0 0 𝑠−2

𝑧

ª®¬𝑅𝑇 .
B ADDITIONAL IMPLEMENTATION DETAILS
This section contains a more thorough description of our implemen-
tation and various optimization strategies to make our hierarchical
rasterizer viable for real-time rendering.

B.1 Tile-based Culling
In Algorithm 1, we describe how to find the maximally contributing
point x̂ of a 2D Gaussian 𝐺2 parameterized by 𝜇2, Σ

−1
2 inside an

axis-aligned tile 𝑋 . If 𝜇2 lies inside 𝑋 , then it is consequently also
the maximum. Otherwise, the maximum has to lie on one of the
two edges that are reachable from 𝜇2. Those are the two edges that
originate from the tile corner point p̂ closest to 𝜇2. We can then find
the optimum by performing the same computation as in Eqn. (11),
but in 2D. By checking if 𝜇2𝑥 , 𝜇2𝑦 are in range of the tile in 𝑥,𝑦

direction, as well as clamping the values of 𝑡𝑥 , 𝑡𝑦 to [0, 1], we ensure
that the final point will lie on one of these two edges. The fact that
the 𝑦 coordinate of d𝑥 and the 𝑥 coordinate of d𝑦 are zero, allows
for further simplifications in the final implementation.

ALGORITHM 1: Finding maximum of 2D Gaussian inside AABB
𝜇2, Σ

−1
2 : mean and inverse covariance matrix of 2D Gaussian𝐺2

𝑥min, 𝑥max, 𝑦min, 𝑦max: AABB dimensions
Data: 𝑋 = {∀x ∈ R2 |𝑥min ≤ xx ≤ 𝑥max ∧ 𝑦min ≤ xy ≤ 𝑦max}
Result: x̂ = arg minx∈𝑋 (x − 𝜇2 )𝑇 Σ−1

2 (x − 𝜇2 )
if 𝜇2 ∈ 𝑋 then

x̂← 𝜇2 ;
else

p̂← Corner closest to 𝜇2 ;
d𝑥 , d𝑦 ← vectors to next AABB corners in 𝑥, 𝑦 direction ;
𝑡𝑥 , 𝑡𝑦 ← 0 ;
if 𝜇2𝑥 < 𝑥min ∨ 𝜇2𝑥 > 𝑥max then

𝑡𝑦 ← min
(
1,max

(
0,

dTyΣ
−1
2 (𝜇2−p̂)

dTyΣ
−1
2 d𝑦

))
;

end
if 𝜇2𝑦 < 𝑦min ∨ 𝜇2𝑦 > 𝑦max then

𝑡𝑥 ← min
(
1,max

(
0, d

T
xΣ
−1
2 (𝜇2−p̂)

dTxΣ
−1
2 d𝑥

))
;

end
x̂← p̂ + 𝑡𝑥d𝑥 + 𝑡𝑦d𝑦 ;

end

B.2 Tighter Bounding of 2D Gaussians
For computing the bounding rectangle of touched tiles on screen,
Kerbl et al. [2023] first bound each 2D Gaussian with a circle of
radius 𝑟 = 3 · 𝜆max, where 𝜆max denotes the largest eigenvalue of
the 2D covariance matrix Σ2. They use a constant factor 𝑡𝑂 = 3 as a
bound for a Gaussian, effectively clipping it at 0.3% of its peak value.
We instead calculate an exact bound by considering the Gaussian’s
actual opacity value 𝛼 and compute 𝑡𝑂 =

√︃
2 log( 𝛼𝜖𝑂 ), which is itself

upper bounded by 𝑡𝑂max ≈ 3.3290 (since 𝛼 ∈ [0, 1]). Therefore, we
conclude that the bound of 𝑡𝑂 = 3 by Kerbl et al. [2023] was actually
chosen too small for the opacity threshold 𝜖𝑂 = 1

255 used in the
renderer. Additionally, our calculated bound allows us to fit a tighter
circular bound around Gaussians with 𝛼 < 1.

B.3 Global Sort
Using a giant global sort for all combined (tile/depth) keys seems
wasteful. Sorting would be more efficient if the entries of each
tile would be sorted individually, using a global partitioned sort.
However, this requires all the entries of a tile to be continuous in
memory, with each tile knowing the range of its respective entries.
We can create such a setup by counting the number of entries per
tile during the Preprocess stage with an atomic counter per tile and
computing tile ranges with a prefix sum. In the Duplication stage,
another atomic counter per tile can be used to retrieve offsets for
each entry inside this range. While this reduces sorting costs to less
than half in our experiments, the allocation using atomic operations
adds an overhead that is about equal to the time saved in sorting.
Thus, we opted to keep the original sorting approach.

B.4 Per-stage details
Preprocess and Duplication. Similarly to 3DGS, we also prepare

common values for each Gaussian during Preprocess: We compute
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and store 𝐺2 for every Gaussian, evaluate Spherical Harmonics
relying on the direction from the camera to the Gaussians center as
view direction, establish Σ−1 relying on the specifics of 𝑅 and 𝑆 , and
precompute Σ−1 (𝜇 − o) for the current camera position o, packing
the 6 unique coefficients of Σ−1 with the precomputed vector for
efficient loading.
We found that activating “fast math” in combination with re-

scheduling in Preprocess and Duplication may lead to slightly differ-
ent ordering of floating point instructions. Thus, there may be slight
differences in the number of tiles contributed by each Gaussian. As
we already store the number of tiles contributed by every Gaussian
for memory allocation, we rely on the following simple solution:
during Preprocess we use a slightly lower threshold for culling, pro-
viding a slightly more conservative bound. During Duplication, we
recheck whether the right number of tile contributions have been
written. If this is not the case, we simply add a dummy entry that
sets a higher tile id and depth to ∞. For training, we suggest to
disable “fast math”, ensuring that gradient computations are as sta-
ble as possible. However, for rendering using “fast math” may be
beneficial to squeeze even more performance.

For load balancing in both Preprocess and Duplication, we rely on
the ballot instruction to determine which threads still require com-
putations. We use shuffle operations to broadcast already loaded reg-
ister values, so each thread can perform culling and depth evaluation
without additional memory loads. We assign successive potential
tiles to each thread according to their thread rank in the warp. For
every iteration of the inner loop we again ballot to determine which
threads in the warp still want to write to a tile, i.e. did not cull away
their tile. We can then mask all ballot bits of lower ranked threads,
compute their sum via popc and determine the write location for
each thread.

Render. Our hierarchical rasterizer is constructed from many
steps, which are interleaved in their operation. Due to the setup,
there are special optimizations we can perform based on the current
state of the pipeline: The pipeline starts out with an initialize phase
for each level, establishing a minimal fill level for each where no
merge sort is performed. In this phase, blending is not taking place
either. During the main operation, we ensure that we maintain a
minimal fill level for each queue. Finally, the pipeline is drained
where the number of elements in each queue will eventually drop
to zero. Furthermore, we know that certain parts of the pipeline will
always be executed a specific number of times. The combination of
these facts allows for a significant amount of specialization and loop
unrolling. However, we found that excessive code specialization and
unrolling leads to a significant amount of stalls due to instruction
fetches. Thus, relying on less specialized code is overall beneficial
although up to 15% more instructions are required for the increased
control logics.

For Batcher Merge Sort, we use a trivial implementation adapted
from the NVIDIA CUDA examples1. For Merge Sort, we use a cus-
tom implementation that is adapted for our use case: each thread
holds the to-be-inserted elements in registers and runs a binary
search through the existing array to find where the new element
should be placed with respect to the existing data. In combination
1https://github.com/NVIDIA/cuda-samples

with the thread’s rank, this yields the position in the final sorted
array. Still, we need to update the position of the existing data. To
this end, we switch the roles and memory locations of both data
arrays and perform the exact same binary search, only switching
strict comparison to non-strict comparison. Also note that we are
operating on a small fixed size array, enabling loop unrolling and
leading to very few memory accesses. For local presorting of four
elements, we simply run three circular shuffles, revealing all ele-
ments among all threads to directly yield the right order via simple
counting of smaller elements. In our tests this was faster than any
other method.
As we reevaluate 𝑡𝑜𝑝𝑡 many times for many different ray direc-

tions, constructing and normalizing view rays can become a bot-
tleneck. Precomputing all view directions a single thread will need
throughout the hierarchy (two for the 4×4 tile-queue, one for the
2×2 tile-queue and one for the per-pixel queue) would result in
significant register pressure. Fortunately, the same directions are
needed by different threads and we can store the directions in shared
memory and fetch them on demand, leading to significant perfor-
mance improvements.
Obviously, we need to take some care to ensure that threads do

not diverge, especially, we can only retire queues if all threads in the
associated tile are done. Also note that the loaded batches remain
in registers for a potentially long time — a 16 batch loaded by a half
warp remains in registers while four 4-thread batches are loaded
and potentially up to 16 elements are blended. However, when the
32-wide batch is loaded, no smaller batches are kept alive, somewhat
reducing register pressure.

C POPPING DETECTION METRIC
For our popping detection metric, we use the RAFT [Teed and Deng
2020] model pre-trained on SINTEL [Butler et al. 2012], which is pub-
licly available. We also compute the optical flow separately for each
method for a fair comparison. We follow Nguyen-Phuoc et al. [2022]
with timesteps 𝑡 ∈ {1, 7} to measure short-range and long-range
view-consistency, respectively. We provide an additional ablation
study for different 𝑡 ∈ {3, 5, 9} in Tab. 8, with three camera paths for
the Garden scene of Mip-NeRF 360 [Barron et al. 2022]. As can be
seen, the consistency error grows almost linearly with increasing 𝑡 .
Further, our method outperforms 3DGS for all timesteps.

Table 8. FLIP𝑡 comparison for 𝑡 ∈ {1, 3, 5, 7, 9} for three camera paths for
the Garden scene of Mip-NeRF 360 [Barron et al. 2022]. As can be seen, our
method outperforms 3DGS for each 𝑡 , and FLIP𝑡 scales almost linearly with
increasing 𝑡 .

Method FLIP1 FLIP3 FLIP5 FLIP7 FLIP9

3DGS 0.0080 0.0109 0.0134 0.0157 0.0180
Ours 0.0075 0.0080 0.0082 0.0085 0.0087

Per-Frame Results. To gain more insight into our proposed pop-
ping detection metric, we additionally provide per-frame plots for a
video of the Garden scene in Fig. 11. As can clearly be seen, there
are significant peaks in FLIP1 for 3DGS, caused by popping. Our
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method, on the other hand, does not suffer from such issues. When
analyzing the plot for FLIP7, 3DGS obtains significantly higher error
rates — using 𝑡 = 7 accumulates artifacts over several iterations,
therefore more clearly indicating popping when averaged over the
complete video sequence.

FLIP1 FLIP7

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Ours 3DGS

Fig. 11. Per-frame FLIP𝑡 scores for 𝑡 ∈ {1, 7} for a complete video sequence
from the Garden scene. Popping in 3DGS causes significant peaks, as can
be seen in the results for FLIP1.

3DGS Cheating. To support our claim that 3DGS indeed cheats
with popping to produce view-dependent effects, we provide ad-
ditional images in Fig. 12. We choose a ground-truth view from
Train and Garden and sample a random rotation from [−0.5◦, 0.5◦]3,
which we apply to the ground-truth camera rotation. Subsequently,
we compare the rendering from the ground-truth camera pose and
the rendering from the slightly rotated pose for 3DGS, as well as
our method.

As can be seen, our approach produces more consistent results un-
der view rotation. Due to 3DGS’s popping, the appearance changes
significantly around test set views, which results in better image
metrics in some configurations. In Fig. 12, we increase contrast for
the zoomed-in views and provide FLIP comparisons to more clearly
illustrate view inconsistencies.

D USER STUDY
For our user study we recruited 18 participants from a local uni-
versity, age 26 to 34, all normal or corrected vision, no color blind-
ness. All participants indicated that they are familiar with computer
graphics (3-5 on a 5-point Likert scale).
We pre-recorded camera paths for all 13 scenes, looking at the

main object present in the scene. For 3DGS and ours, we used the
version specifically trained for these approaches without Opacity
Decay. The paths all exhibit translation and rotation. The recorded
video clips were between 8 and 19 seconds long.

After a pre-questionnaire, we instructed the participants that they
will be presented with video pairs and they should specifically look
for consistency in the rendering and then rate whether either of
the video clips was more consistent than the other. If they did not
consider any clip more consistent, they were allowed to rate them

Ground Truth Images Contrast ↑ FLIP
Original Rotated

3D
G
S

O
ur
s

3D
G
S

O
ur
s

Fig. 12. 3DGS can fake view-dependent effects with popping. We slightly
rotate test set views, and 3DGS’s results are significantly less consistent
compared to our results. We increase contrast for zoomed-in views and
include a FLIP view for a better comparison.

as equal. We mapped those answers onto scores 𝑠:

𝑠 =


−1 3DGS is more consistent,

0 both are equal,
1 ours is more consistent.

We presented both videos side-by-side and played them in a loop.
We did not restrict the answer times, allowing participants to watch
the clips repeatedly. We randomized the order of videos (left, right)
as well as the order of scenes.
Overall, participants considered our method more consistent in

54.3% of the cases, voted for equal in 33.3% and preferred 3DGS
in 12.4%, leading to an average preference score of 𝑠𝑚𝑒𝑎𝑛 = 0.42.
The result is statistically significant according to Wilcoxon Signed
Rank tests (𝑍 = 2276.5, 𝑝 < .0001) [Woolson 2008]. As can be
seen in Fig. 13, we observe inter-scene differences. For scenes with
mostly small Gaussians, like in Bonsai or Kitchen, we expected
less difference in the voted scores, as there is also less popping. In
contrast, for scenes with large Gaussians, where popping occurs
more often, like Room, Train or Truck, it is not surprising that our
method is preferred by a large margin. We were not able to assess
why participants slightly preferred 3DGS for Bicycle.

E DETAILED PERFORMANCE TIMINGS
In this section, we provide additional performance ablation studies.
We follow the evaluation setup from themainmaterial, interpolating
between all available COLMAP poses (30 frames per pose), and
rendering in Full HD on an NVIDIA RTX 4090 with CUDA 11.8.

Per-Scene Performance Timings. In Tab. 9, we show per-scene per-
formance timings for the total render time in ms. For the Mip-NeRF
360 [Barron et al. 2022] Indoor and Outdoor scenes, our method is
slightly slower than 3DGS. For the Tanks & Temples [Knapitsch
et al. 2017] and Deep Blending [Hedman et al. 2018] datasets, we
achieve higher performance than 3DGS for most scenes. Analyzing
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Fig. 13. Average per-scene user study score. A positive score indicates a
preference for our method, whereas a negative score indicates a preference
for 3DGS. Our method clearly outperforms 3DGS.

the performance in more detail, we could verify that our method out-
performs 3DGS when Gaussian are larger and/or more anisotropic,
as our culling and load balancing can speed up rendering. If Gaus-
sians are small and uniformly sized, the main load stems from the
final stages of the render kernel, where sorting of course creates an
overhead compared to 3DGS.

Table 9. Total performance timings for different configurations of our
method and 3DGS, with the respective number of Gaussians per scene
for comparison. Although scenes may exhibit a similar number of Gaus-
sians, performance timings vary significantly.

Scene Bicycle Flowers Garden Stump Treehill
#Gaussians 5.95M 3.60M 5.49M 4.84M 3.85M

(A) Ours 6.829 4.921 7.247 4.693 5.012
(B) Ours w/o per-tile depth 6.730 4.693 7.160 4.509 4.879
(C) Ours w/o load balancing 8.482 6.732 9.167 6.496 6.919
(D) Ours w/o tile-based culling 10.066 7.338 9.796 6.584 7.884
(E) Ours w/o hier. culling 11.087 7.589 11.788 7.178 7.773
3DGS 7.438 4.002 6.034 3.708 4.492

Scene Bonsai Counter Kitchen Room
#Gaussians 1.25M 1.20M 1.81M 1.55M

(A) Ours 3.399 4.390 5.695 3.990
(B) Ours w/o per-tile depth 3.285 4.250 5.587 3.844
(C) Ours w/o load balancing 5.251 6.217 7.558 5.843
(D) Ours w/o tile-based culling 4.846 6.977 8.214 6.155
(E) Ours w/o hier. culling 4.608 6.142 8.916 5.450
3DGS 2.574 4.043 4.783 4.180

Dataset Deep Blending Tanks & Temples

Scene DrJohnson Playroom Train Truck
#Gaussians 3.28M 2.33M 1.05M 2.56M

(A) Ours 4.763 4.549 4.225 5.100
(B) Ours w/o per-tile depth 4.612 4.373 4.099 4.898
(C) Ours w/o load balancing 6.648 6.275 6.215 6.942
(D) Ours w/o tile-based culling 7.998 7.295 7.469 8.363
(E) Ours w/o hier. culling 6.418 5.999 5.675 7.113
3DGS 5.752 4.303 5.548 5.506

Relative Performance Timings. In Tab. 10, we report per-stage
performance timings of our method relative to 3DGS for each scene.

Preprocess is generally slower due to the additional workload of tile-
based culling and computation of Σ−1. Due to our load balancing
strategy, our Duplicate stage is faster for every tested scene, except
for Flowers — here, our load balancing scheme is not able to amortize
the additional workload of per-tile depth evaluations and tile-based
culling. Sort is accelerated drastically, as the modifications for the
previous stages result in fewer 2D splats to sort. The Render stage is
naturally slower due to the overhead of our hierarchical rasterizer.

Table 10. Relative per-scene performance timings of our method with re-
spect to 3DGS for each stage. Shades of blue indicate scenes where our
method performed favorably, whereas shades of red indicate the opposite.
We also report average percentages in the final row (not average runtime).

Dataset Scene #Gaussians Preprocess Duplicate Sort Render Total

M360
Outdoor

Bicycle 5.95M 1.38 0.65 0.19 1.40 0.92
Flowers 3.60M 1.53 1.21 0.25 1.71 1.23
Garden 5.49M 1.27 0.78 0.29 2.04 1.20
Stump 4.84M 1.52 0.90 0.26 1.82 1.27
Treehill 3.85M 1.45 0.88 0.22 1.70 1.12

M360
Indoor

Bonsai 1.25M 1.32 0.84 0.25 2.06 1.32
Counter 1.20M 1.46 0.75 0.17 1.80 1.09
Kitchen 1.81M 1.25 0.66 0.25 2.02 1.19
Room 1.55M 1.60 0.70 0.13 1.53 0.95

DB DrJohnson 3.28M 1.60 0.62 0.12 1.36 0.83
Playroom 2.33M 1.70 0.93 0.14 1.63 1.06

T&T Train 1.05M 1.42 0.61 0.11 1.53 0.76
Truck 2.56M 1.57 0.79 0.13 1.69 0.93

Average 2.98M 1.47 0.79 0.19 1.71 1.07

As previously discussed, Bonsai and Train exhibit the biggest
inter-method differences despite the similar number of Gaussians
due to differently sized splats in screen space. Bicycle is the only
scene of Mip-NeRF 360 Outdoor where our approach outperforms
3DGS. Although Garden has a similarly high number of Gaussians,
Bicycle allows for more excessive culling and, therefore, has a sig-
nificantly lower avg. 𝑁𝑡 for our method (2.7 vs. 2.41) compared to
3DGS (6.24 vs. 4.45).

Hyperparameter Performance Ablation. In Tab. 11, we compare
timings for the Render stage for different size combinations of the
2×2 tile-queue and per-pixel queue. As expected, our final chosen
values (8 and 4) perform best, since they have the lowest memory
and compute requirements. Runtime increases significantly for very
large per-pixel queue sizes, as register pressure increases and spills
into local memory. In Tab. 11, we also show performance timings of
the Preprocess and Duplicate stages for different load balancing tile
thresholds (∞ = no load balancing). Gaussianswhose 2D splat covers
more tiles than this threshold will be computed cooperatively by all
threads of a warp. Our chosen value of 32 performs well for both
stages. Preprocess, which only performs tile-based culling, does not
show large differences and is even slightly faster for small thresholds.
Duplicate shows significant improvements, as it performs many
more computations per tile, i.e. tile-based culling, per-tile depth
calculation, and key/value writes. Choosing a value of 32 also fits
GPU warp sizes, and allows for better warp utilization, as well as
fast concurrent memory writes.
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F PER-SCENE QUALITY METRICS
We provide per-scene results for Mip-NeRF 360 [Barron et al. 2022],
Tanks and Temples [Knapitsch et al. 2017] and Deep Blending [Hed-
man et al. 2018] in Tabs. 12 and 13. Results with dagger (†) were
reproduced from Kerbl et al. [2023]: this includes results for Mip-
NeRF 360 [Barron et al. 2022], Instant-NGP [Müller et al. 2022] and
Plenoxels [Fridovich-Keil et al. 2022]. We evaluate our final hier-
archical rasterizer (“Ours”), as well as the fixed-size head sorting
method for two different resorting window sizes (“Head 8” and
“Head 16”), with and without per-tile depth (“w/o PTD”).

Table 11. Ablation of our method for different sizes of the 2×2 tile-queue
and the per-pixel queue in addition to different load balancing thresholds,
with the same underlying model (no retraining).

2×2 tile-queue 8 8 12 12 20 20
per-pixel queue 4 8 4 8 8 16

Render 3.646 4.000 4.052 4.364 4.470 8.549

Threshold 1 4 16 32 64 256 ∞

Preprocess 0.644 0.643 0.648 0.648 0.649 0.652 0.847
Duplicate 0.607 0.541 0.437 0.435 0.447 0.515 2.059

Table 12. Combined per-scene scores for PSNR, SSIM, LPIPS and FLIP for
Tanks & Temples and Deep Blending.

Metric PSNR SSIM

Dataset Tanks & Temples Deep Blending Tanks & Temples Deep Blending

Scene Truck Train DrJ. Playroom Truck Train DrJ. Playroom

Mip-NeRF 360† 24.91 19.52 29.14 29.66 0.857 0.660 0.901 0.900
Instant-NGP (base)† 23.26 20.17 27.75 19.48 0.779 0.666 0.839 0.754
Instant-NGP (big)† 23.38 20.46 28.26 21.67 0.800 0.689 0.854 0.780
Plenoxels 23.23 18.94 23.16 23.02 0.774 0.663 0.787 0.802
3DGS 25.39 22.04 29.06 29.86 0.878 0.813 0.898 0.901

Head 8 w/o PTD 24.79 21.52 29.40 30.29 0.877 0.809 0.902 0.905
Head 8 24.81 21.41 29.51 30.31 0.878 0.810 0.904 0.905
Head 16 w/o PTD 24.84 21.60 29.40 30.36 0.878 0.810 0.904 0.905
Head 16 24.81 21.36 29.44 30.31 0.877 0.809 0.903 0.906
Ours w/o PTD 24.93 21.53 29.44 30.31 0.878 0.810 0.903 0.905
Ours 24.93 21.48 29.42 30.31 0.878 0.808 0.903 0.905

3DGS (Opacity Decay) 25.31 21.73 28.18 29.69 0.874 0.804 0.888 0.899
Ours (Opacity Decay) 24.90 21.46 29.38 30.30 0.875 0.804 0.903 0.907

LPIPS FLIP

Dataset Tanks & Temples Deep Blending Tanks & Temples Deep Blending

Scene Truck Train DrJ. Playroom Truck Train DrJ. Playroom

Mip-NeRF 360† 0.159 0.354 0.237 0.252 0.162 0.302 0.117 0.158
Instant-NGP (base)† 0.274 0.386 0.381 0.465 0.194 0.297 0.141 0.375
Instant-NGP (big)† 0.249 0.360 0.352 0.428 0.190 0.291 0.133 0.311
Plenoxels 0.308 0.379 0.433 0.418 0.196 0.328 0.222 0.266
3DGS 0.148 0.208 0.247 0.246 0.148 0.250 0.119 0.143

Head 8 w/o PTD 0.143 0.204 0.236 0.237 0.165 0.265 0.116 0.140
Head 8 0.142 0.203 0.234 0.235 0.166 0.266 0.114 0.139
Head 16 w/o PTD 0.142 0.203 0.234 0.236 0.166 0.262 0.115 0.138
Head 16 0.142 0.203 0.234 0.235 0.164 0.267 0.116 0.139
Ours w/o PTD 0.142 0.204 0.234 0.235 0.163 0.264 0.115 0.139
Ours 0.142 0.204 0.234 0.235 0.164 0.267 0.115 0.138

3DGS (Opacity Decay) 0.160 0.228 0.265 0.260 0.148 0.261 0.124 0.144
Ours (Opacity Decay) 0.151 0.218 0.241 0.241 0.160 0.267 0.115 0.138

Table 13. Combined per-scene scores for PSNR, SSIM, LPIPS & FLIP for the
Mip-NeRF 360 dataset.

Dataset Mip-NeRF 360 Outdoor Mip-NeRF 360 Indoor

Scene Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

PSNR

Mip-NeRF 360† 24.30 21.65 26.88 26.36 22.93 31.47 29.45 31.99 33.40
Instant-NGP (base)† 22.19 20.35 24.60 23.63 22.36 29.27 26.44 28.55 30.34
Instant-NGP (big)† 22.17 20.65 25.07 23.47 22.37 29.69 26.69 29.48 30.69
Plenoxels 21.90 20.10 23.50 20.68 22.26 27.57 23.64 23.43 24.71
3DGS 25.18 21.48 27.24 26.62 22.45 31.49 28.98 31.35 32.10

Head 8 w/o PTD 25.18 21.49 27.14 26.64 22.41 30.77 28.83 31.06 31.85
Head 8 25.19 21.50 27.20 26.62 22.52 30.88 28.78 31.04 31.98
Head 16 w/o PTD 25.20 21.48 27.18 26.62 22.45 30.84 28.84 30.89 31.63
Head 16 25.22 21.55 27.12 26.59 22.50 30.81 28.78 31.06 31.88
Ours w/o PTD 25.21 21.45 27.17 26.68 22.47 30.84 28.70 31.23 31.90
Ours 25.20 21.50 27.16 26.69 22.43 30.83 28.59 31.13 31.93

3DGS (Opacity Decay) 24.93 21.30 27.05 26.57 22.39 31.03 28.64 31.07 31.52
Ours (Opacity Decay) 25.00 21.30 26.95 26.67 22.39 30.58 28.33 30.46 30.76

SSIM

Mip-NeRF 360† 0.685 0.584 0.809 0.745 0.631 0.910 0.892 0.917 0.938
Instant-NGP (base)† 0.491 0.450 0.649 0.574 0.518 0.855 0.798 0.818 0.890
Instant-NGP (big)† 0.512 0.486 0.701 0.594 0.542 0.871 0.817 0.858 0.906
Plenoxels 0.495 0.432 0.606 0.523 0.510 0.840 0.758 0.648 0.814
3DGS 0.763 0.603 0.862 0.772 0.632 0.917 0.906 0.925 0.939

Head 8 w/o PTD 0.766 0.602 0.862 0.773 0.633 0.917 0.905 0.925 0.939
Head 8 0.766 0.604 0.862 0.773 0.634 0.916 0.905 0.924 0.939
Head 16 w/o PTD 0.767 0.603 0.861 0.773 0.633 0.917 0.905 0.922 0.939
Head 16 0.767 0.604 0.861 0.773 0.635 0.917 0.905 0.925 0.939
Ours w/o PTD 0.767 0.603 0.862 0.775 0.635 0.917 0.904 0.925 0.939
Ours 0.767 0.604 0.862 0.775 0.635 0.917 0.903 0.925 0.939

3DGS (Opacity Decay) 0.749 0.592 0.854 0.770 0.626 0.914 0.899 0.921 0.937
Ours (Opacity Decay) 0.756 0.593 0.855 0.775 0.629 0.914 0.898 0.920 0.935

Dataset Mip-NeRF 360 Outdoor Mip-NeRF 360 Indoor

Scene Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

LPIPS

Mip-NeRF 360† 0.305 0.346 0.171 0.261 0.347 0.213 0.207 0.128 0.179
Instant-NGP (base)† 0.487 0.481 0.312 0.450 0.489 0.301 0.342 0.254 0.227
Instant-NGP (big)† 0.446 0.441 0.257 0.421 0.450 0.261 0.306 0.205 0.193
Plenoxels 0.490 0.506 0.374 0.468 0.495 0.344 0.378 0.404 0.336
3DGS 0.213 0.338 0.109 0.216 0.327 0.221 0.202 0.127 0.206

Head 8 w/o PTD 0.207 0.336 0.107 0.211 0.322 0.216 0.199 0.126 0.203
Head 8 0.207 0.335 0.107 0.211 0.320 0.217 0.199 0.126 0.202
Head 16 w/o PTD 0.206 0.336 0.107 0.211 0.321 0.216 0.198 0.128 0.203
Head 16 0.206 0.335 0.107 0.211 0.319 0.216 0.199 0.126 0.202
Ours w/o PTD 0.205 0.335 0.107 0.210 0.319 0.216 0.199 0.126 0.203
Ours 0.206 0.335 0.107 0.210 0.319 0.216 0.200 0.126 0.202

3DGS (Opacity Decay) 0.244 0.358 0.125 0.232 0.347 0.230 0.215 0.137 0.210
Ours (Opacity Decay) 0.232 0.354 0.122 0.224 0.336 0.224 0.211 0.135 0.207

FLIP

Mip-NeRF 360† 0.169 0.217 0.124 0.156 0.184 0.095 0.100 0.088 0.069
Instant-NGP (base)† 0.203 0.260 0.155 0.209 0.189 0.118 0.144 0.123 0.093
Instant-NGP (big)† 0.201 0.251 0.146 0.213 0.189 0.112 0.139 0.113 0.089
Plenoxels 0.211 0.271 0.181 0.276 0.206 0.143 0.201 0.218 0.165
3DGS 0.158 0.225 0.118 0.150 0.186 0.093 0.105 0.096 0.082

Head 8 w/o PTD 0.160 0.223 0.120 0.150 0.184 0.102 0.107 0.100 0.086
Head 8 0.159 0.223 0.119 0.150 0.181 0.101 0.108 0.099 0.083
Head 16 w/o PTD 0.159 0.224 0.119 0.151 0.182 0.101 0.107 0.103 0.086
Head 16 0.159 0.222 0.121 0.151 0.183 0.102 0.108 0.099 0.085
Ours w/o PTD 0.160 0.225 0.120 0.149 0.183 0.101 0.110 0.099 0.085
Ours 0.159 0.224 0.119 0.149 0.184 0.101 0.111 0.099 0.084

3DGS (Opacity Decay) 0.162 0.228 0.120 0.151 0.182 0.096 0.107 0.099 0.085
Ours (Opacity Decay) 0.162 0.228 0.122 0.148 0.182 0.103 0.112 0.106 0.090
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